CASE REPORT

Vitamin B12 deficiency, a cause of Bicytopenia complicating Pregnancy

Nisha Bhatia, Krishna K Meka

ABSTRACT

Introduction: Bicytopenia in pregnancy is a rare entity that poses as a diagnostic challenge. It may present as a combination of anemia, leukopenia or thrombocytopenia. Though bone marrow failure is the commonest cause, nutritional deficiencies need to be ruled out. We report a case of Bicytopenia in pregnancy due to Vitamin B12 deficiency.

Case report: A 22 year old primigravida with 29 weeks of gestation presented with severe anemia. On evaluation her haemoglobin was 5.1gm/dl and blood picture showed a mixed population of normocytes, hypochromic red blood cells with macrocytes; normal neutrophil count with hypersegmented neutrophils and diminished platelets. Iron studies were normal and her serum Vitamin B12 levels were low. She was given blood transfusions to improve her hemoglobin. Post transfusion, she set into spontaneous labor and delivered a dead female baby of wt 1kg. Treatment with injectable cyanocobalamin followed by oral multivitamin led to a sustained improvement in the haematological parameters.

Discussion: This case demonstrates that B12 deficiency could be a rare cause of bicytopenia in pregnancy. Failure to diagnose and treat could lead to fatal maternal and fetal complications. Early diagnosis of B12 deficiency and supplementation is warranted.

Keywords: Bicytopenia, Complications in pregnancy, Severe anemia, Vitamin B12 deficiency.

INTRODUCTION

Bicytopenia is defined as a simultaneous deficiency of any two blood cell lines—red blood cells, white blood cells, or platelets—leading to anemia, leukopenia, or thrombocytopenia. It can adversely affect the health of the mother and fetus. Lower counts of multiple blood components in pregnancy are not only a diagnostic challenge but also difficult to treat, as it is life-threatening to both mother and the fetus. The common causes of bicytopenia in pregnancy are aplastic anemia, myelodysplastic syndrome, and megaloblastic anemia. Though bone marrow failure and malignancies are important causes, nutritional causes should be primarily ruled out. We report the rare case of a 22-year-old primigravida with bicytopenia due to vitamin B12 deficiency.

How to cite this article: Bhatia N, Meka KK. Vitamin B12 Deficiency, a Cause of Bicytopenia complicating Pregnancy. World J Anemia 2018;2(1):39-40.

Source of support: Nil

Conflict of interest: None

1Assistant Professor, 2Professor

1,2Department of Obstetrics and Gynecology, Apollo Institute of Medical Sciences & Research, Hyderabad, Telangana, India

Corresponding Author: Krishna K Meka, Professor Department of Obstetrics and Gynecology, Apollo Institute of Medical Sciences & Research, Hyderabad, Telangana, India Phone: +919849175200, e-mail: doc Krishnak@yahoo.co.in
showed normal count and hypersegmented neutrophils; platelets were diminished in count. Reticulocyte count 2.2. Iron studies: serum iron 109 (50–170 μg/dL); serum ferritin 169 (12–150 ng/mL); total iron-binding capacity 375 (45–85 μmol/L); serum transferrin 255 (200–350 mg/dL); serum B12 levels 150 pg/mL; serum thyroid stimulating hormone was 1.7. Liver function tests and renal function tests were normal. Hematologist’s opinion was taken.

The patient was given three units of packed cell transfusion to improve hemoglobin. The patient set into spontaneous labor at 29 weeks and delivered a dead female baby of weight 1 kg. Since platelets were above 20,000/cu mm, the platelets were reserved and transfusion was deferred. The patient was treated with 1,000 μg of intramuscular cyanocobalamin daily for 1 week, followed by multivitamin supplements. Subsequently, platelet count and mean corpuscular volume normalized and there was sustained improvement in the hemoglobin level.

DISCUSSION

We have presented a case of a young primigravida with 29 weeks with severe anemia who had a blood picture showing macrocytes with low platelet count, due to vitamin B12 deficiency. She had a preterm delivery and delivered a dead female baby of weight 1 kg. Since platelets were above 20,000/cu mm, the platelets were reserved and transfusion was deferred. The patient was treated with 1,000 μg of intramuscular cyanocobalamin daily for 1 week, followed by multivitamin supplements. Subsequently, platelet count and mean corpuscular volume normalized and there was sustained improvement in the hemoglobin level.

The adverse effects of vitamin B12 deficiency depend upon its severity and its effect on fetus may range from abortion to low birth weight or intrauterine death of the fetus or congenital anomalies like neural tube defects. Lower vitamin B12 levels are associated with increased plasma homocysteine levels, which cause the above adverse effects.7

The treatment of vitamin B12 deficiency is the same as for nonpregnant patients. If there is no malabsorption, oral supplements of B12 are sufficient. Since absorption tests cannot be done in pregnancy, initially, B12 injections were given in our patient, followed by oral supplementation.8

CONCLUSION

Vitamin B12 deficiency rarely presents as a cause of bicytopenia and may pose a problem in diagnosis. If left untreated, it can cause fetal and maternal complications. Hence, looking beyond iron deficiency anemia is recommended in pregnant patients with severe anemia.

REFERENCES